NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data

Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in ∼ 1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

265,23 € per year

only 22,10 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

reString: an open-source Python software to perform automatic functional enrichment retrieval, results aggregation and data visualization

Article Open access 06 December 2021

NBIA: a network-based integrative analysis framework – applied to pathway analysis

Article Open access 06 March 2020

STAGEs: A web-based tool that integrates data visualization and pathway enrichment analysis for gene expression studies

Article Open access 02 May 2023

Accession codes

Accessions

Gene Expression Omnibus

Swiss-Prot

References

  1. Li, S. et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol.15, 195–204 (2014). ArticleGoogle Scholar
  2. Pena, O.M. et al. An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial clinical presentation. EBioMedicine1, 64–71 (2014). ArticleGoogle Scholar
  3. Zhang, G. et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin. Cancer Res.19, 4983–4993 (2013). ArticleCASGoogle Scholar
  4. Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet.4, e1000282 (2008). ArticleGoogle Scholar
  5. Gomez-Cabrero, D. et al. Data integration in the era of omics: current and future challenges. BMC Syst. Biol.8 (suppl. 2), I1 (2014). ArticleGoogle Scholar
  6. Tseng, G.C., Ghosh, D. & Feingold, E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res.40, 3785–3799 (2012). ArticleCASGoogle Scholar
  7. O'Donoghue, S.I. et al. Visualizing biological data-now and in the future. Nat. Methods7, S2–S4 (2010). ArticleCASGoogle Scholar
  8. Goble, C. & Stevens, R. State of the nation in data integration for bioinformatics. J. Biomed. Inform.41, 687–693 (2008). ArticleGoogle Scholar
  9. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol.25, 1251–1255 (2007). ArticleCASGoogle Scholar
  10. Wodke, J.A. et al. MyMpn: a database for the systems biology model organism Mycoplasma pneumoniae. Nucleic Acids Res.43 (Database issue): D618–D623 (2014). PubMedPubMed CentralGoogle Scholar
  11. Breuer, K. et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res.41, D1228–D1233 (2013). ArticleCASGoogle Scholar
  12. Rhodes, D.R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9, 166–180 (2007). ArticleCASGoogle Scholar
  13. Chelaru, F., Smith, L., Goldstein, N. & Bravo, H.C Epiviz: interactive visual analytics for functional genomics data. Nat. Methods11, 938–940 (2014). ArticleCASGoogle Scholar
  14. Nekrutenko, A. & Taylor, J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat. Rev. Genet.13, 667–672 (2012). ArticleCASGoogle Scholar
  15. Xia, J. et al. INMEX—a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res.41, W63–W70 (2013). ArticleGoogle Scholar
  16. Xia, J., Lyle, N.H., Mayer, M.L., Pena, O.M. & Hancock, R.E.W. INVEX—a web-based tool for integrative visualization of expression data. Bioinformatics29, 3232–3234 (2013). ArticleCASGoogle Scholar
  17. Xia, J., Benner, M.J. & Hancock, R.E.W. NetworkAnalyst—integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res.42, W167–W174 (2014). ArticleCASGoogle Scholar
  18. Tarraga, J. et al. GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res.36, W308–W314 (2008). ArticleCASGoogle Scholar
  19. Reich, M. et al. GenePattern 2.0. Nat. Genet.38, 500–501 (2006). ArticleCASGoogle Scholar
  20. Xia, J., Mandal, R., Sinelnikov, I.V., Broadhurst, D. & Wishart, D.S. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res.40, W127–W133 (2012). ArticleCASGoogle Scholar
  21. Xia, J. & Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc.6, 743–760 (2011). ArticleCASGoogle Scholar
  22. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques34, 374–378 (2003). ArticleCASGoogle Scholar
  23. Perez-Llamas, C. & Lopez-Bigas, N. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE6, e19541 (2011). ArticleCASGoogle Scholar
  24. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). ArticleCASGoogle Scholar
  25. Huang, D.W. et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res.35, W169–W175 (2007). ArticleGoogle Scholar
  26. Reimand, J., Arak, T. & Vilo, J. g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res.39, W307–W315 (2011). ArticleCASGoogle Scholar
  27. Lynn, D.J. et al. InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst. Biol.4, 218 (2008). ArticleGoogle Scholar
  28. Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods9, 1069–1076 (2012). ArticleCASGoogle Scholar
  29. Smyth, G.K. Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds. Gentleman, R. et al. 397–420 (Springer, 2005).
  30. Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol.15, R29 (2014). ArticleGoogle Scholar
  31. Orchard, S. et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat. Methods9, 345–350 (2012). ArticleCASGoogle Scholar
  32. Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M. & Wodak, S.J. Interaction databases on the same page. Nat. Biotechnol.29, 391–393 (2011). ArticleCASGoogle Scholar
  33. Bader, G.D., Betel, D. & Hogue, C.W. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res.31, 248–250 (2003). ArticleCASGoogle Scholar
  34. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res.34, D535–D539 (2006). ArticleCASGoogle Scholar
  35. Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res.40, D857–D861 (2012). ArticleCASGoogle Scholar
  36. Hermjakob, H. et al. IntAct: an open source molecular interaction database. Nucleic Acids Res.32, D452–D455 (2004). ArticleCASGoogle Scholar
  37. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell159, 1212–1226 (2014). ArticleCASGoogle Scholar
  38. Pena, O.M., Pistolic, J., Raj, D., Fjell, C.D. & Hancock, R.E.W. Endotoxin tolerance represents a distinctive state of alternative polarization (M2) in human mononuclear cells. J. Immunol.186, 7243–7254 (2011). ArticleCASGoogle Scholar
  39. Ramasamy, A., Mondry, A., Holmes, C.C. & Altman, D.G. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med.5, e184 (2008). ArticleGoogle Scholar
  40. Mitra, K., Carvunis, A.R., Ramesh, S.K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet.14, 719–732 (2013). ArticleCASGoogle Scholar
  41. Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A.F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics18 (suppl. 1), S233–S240 (2002). ArticleGoogle Scholar
  42. Beisser, D., Klau, G.W., Dandekar, T., Muller, T. & Dittrich, M.T. BioNet: an R package for the functional analysis of biological networks. Bioinformatics26, 1129–1130 (2010). ArticleCASGoogle Scholar
  43. Vidal, M., Cusick, M.E. & Barabasi, A.L. Interactome networks and human disease. Cell144, 986–998 (2011). ArticleCASGoogle Scholar
  44. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science322, 104–110 (2008). ArticleCASGoogle Scholar
  45. Schramm, S.J. et al. Disturbed protein-protein interaction networks in metastatic melanoma are associated with worse prognosis and increased functional mutation burden. Pigment Cell Melanoma Res.26, 708–722 (2013). ArticleCASGoogle Scholar
  46. Liu, Y., Koyuturk, M., Barnholtz-Sloan, J.S. & Chance, M.R. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC Syst. Biol.6, 65 (2012). ArticleCASGoogle Scholar
  47. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res.19, 1639–1645 (2009). ArticleCASGoogle Scholar
  48. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in International AAAI Conference on Weblogs and Social Mediahttp://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewFile/154Forum/1009 (2009).

Acknowledgements

The authors thank the Canadian Institutes for Health Research (CIHR) for financial support.

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada Jianguo Xia, Erin E Gill & Robert E W Hancock
  2. and Department of Animal Science, Institute of Parasitology, McGill University, Ste. Ann de Bellevue, Québec, Canada Jianguo Xia
  3. Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada Jianguo Xia
  4. Wellcome Trust Sanger Institute, Hinxton, United Kingdom Robert E W Hancock
  1. Jianguo Xia